Efficient approximation algorithms for clustering point-sets

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Approximation Algorithms for Point-set Diameter in Higher Dimensions

We study the problem of computing the diameter of a  set of $n$ points in $d$-dimensional Euclidean space for a fixed dimension $d$, and propose a new $(1+varepsilon)$-approximation algorithm with $O(n+ 1/varepsilon^{d-1})$ time and $O(n)$ space, where $0 < varepsilonleqslant 1$. We also show that the proposed algorithm can be modified to a $(1+O(varepsilon))$-approximation algorithm with $O(n+...

متن کامل

Approximation Algorithms for Clustering

Approximation Algorithms for Clustering Clustering items into groups is a fundamental problem in the information sciences. Many typical clustering optimization problems are NP-hard and so cannot be expected to be solved optimally in a reasonable amount of time. Although the use of heuristics is common, in this dissertation we seek approximation algorithms, whose performance ratio in relation to...

متن کامل

Approximation Algorithms for Clique Clustering

A clique clustering of a graph is a partitioning of its vertices into disjoint cliques. The quality of a clique clustering is measured by the total number of edges in its cliques. We consider the online variant of the clique clustering problem, where the vertices of the input graph arrive one at a time. At each step, the newly arrived vertex forms a singleton clique, and the algorithm can merge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Geometry

سال: 2010

ISSN: 0925-7721

DOI: 10.1016/j.comgeo.2007.12.002